Lecture 19 : Conditional Probability & Expectation

STAT205 Lecturer: Jim Pitman Scribe: Saurabh Amin <amins@berkeley.edu>

This set of notes is a revision of the work of Charles C. Fowlkes. Reference: [1],
section 4.1.

19.1 Definition of Conditional Expectation
We present the definition of conditional expectation due to Kolmogorov (1933).

Definition 19.1 Given the probability space (2, F,P), some sub-sigma field G C F,
and a random variable X € LY(F) (meaning that X is F-measurable and E|X| < oc0),
the conditional expectation of X given G is the (almost surely unique) random variable

X such that

i. X € LY(G) that is, X is G-measurable; and
i. B(X1g) = E(X1g) for all G € G: that is, X integrates like X over all G-sets.

Recall that E(X1g) = [, XdP. The random variable X is denoted by E(X|G).
We now discuss the motivation behind this definition by elementary considerations.
Recall the ‘undergraduate’ definition of conditional probability given by Bayes” Rule

P(A, B)

P(A|B) = F(D)

for P(B) > 0. Now if Gy, Gy, ... is a partition of € into measurable sets, then
P(A) =) P(ANG;) =Y P(AG)P(Gy) (19.1)

Recall that this is a form of the law of total probability. P(:|B) is a new probability
measure on {2 which concentrates on B. We can then generalize naturally to condi-
tional expectations because P(dw|B) can be used to integrate as any P(dw). Using
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this fact, Bayes’ rule, and the law of total probability, we have

E(X|B) = /X P(dw|B)

w)l(w € B)P(dw)
P(B)
E(X13p)
P(B)

Note that equation (19.1) is obtained by multiplying the identity 1 = >, 1, on both
sides by 14 and taking expectations. This can easily be generalized to the following
by multiplying the identity on both sides by X and taking expectations.

= Y E(X1g,) = > E(X|G)P(Gy) (19.2)

This will be true provided E|X| < co. A variation of equation (19.2) can be obtained
as follows. Let G be any union of the G;, i.e., G € G where G = o(G;,i=1,2,,...).
Again, multiplying the identity 15 = Zi:GiCc 1, on both sides by X and taking
expectations we obtain the following:

E(X1lg) = > E(X1g)
1:G;CG

= ) E(X|G)P(G)) (19.3)

1:G;CG
The R.H.S. of equation (19.3) can interpreted as the expectation of a random variable

X = > ia,cq B(X]Gi)1g,, that is, X takes the value E(X|G;) if G; occurs. We have

just shown that E(X1¢g) = ]E(Xlg) for every G which is a union of the G;s’ (refer to
condition (i) of definition 19.1). Obviously, since X is measurable w.r.t. G, condition
(i) of definition 19.1 is satisfied. So we have just constructed X = E(X|G) explicitly
in the case when G = o(Gy, Gy, . . .).

19.2 Existence and Uniqueness of Conditional Ex-
pectation

Proposition 19.2 E(X|G) is unique up to almost sure equivalence.

Proof Sketch: Suppose that two random variables XL and X, are candidates for
the conditional expectation E(X|G). Let Y := X; — X5. So we have Y € L'(G)
and E(Y1g) = 0 VG € G. In particular, choose G = {Y > €} and so we have
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E(Y1(Y > €)) = 0. By Markov’s inequality, P(Y > ¢) < E(Y1(Y > €))/e = 0.
Interchanging the roles of X; and X,, we have P(Y < —e) = 0. And since € is
arbitrary, P(Y =0) = 1. u

Proposition 19.3 E(X|G) exists.

We give three different approaches for dealing with the general case.

19.2.1 Measure Theory Proof
Here we pull out some power tools from measure theory.

Theorem 19.4 (Lebesgue-Radon-Nikodym) (see [1], p.477) If i and X are non-
negative o-finite measures on a collection G and u(G) =0 = AG) = 0 (written
A << p, pronounced "X is absolutely continuous with respect to p”) for all G € G then
there exists a non-negative G-measurable function Y such that

M@:/?w
G
for all G € G. If X is another such function then X =Y u a.e.

Proof Sketch: (existence via Lebesgue-Radon-Nikodym) Assume Y > 0 and define
the measure

Q(C) = /CYdP —EY1e

which is non-negative and finite because E[Y| < oco. Note that @) is absolutely
continuous with respect to P. LRN implies the existence of Y which satisfies our

requirements to be a version of the conditional expectation ¥ = E(Y|G). For general
Y we can employ E(Y|G) — E(Y|G). u

19.2.2 Hilbert Space Method
This gives a nice geometric picture for the case when Y € L2

Lemma 19.5 FEvery nonempty, closed, convex set E in a Hilbert space H contains a
unique element of smallest norm.

Lemma 19.6 (Existence of Projections in Hilbert Space) Given a closed sub-
space K of a Hilbert space H and element v € H, there exists a decomposition
r=y+ 2z wherey € K and z € K+ (the orthogonal complement).
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The idea for the existence of projections is to let y be the element of smallest norm
in z+ K and z = x — y. See Rudin 87 (p.79) for a full discussion of Lemma 19.5.

Proof Sketch: (Existence via Hilbert Space Projection) Suppose Y € L?(F) and
X € L*(G). Requirement (i) demands that for all X

E(Y - E(Y[9))X) =0

which has the geometric interpretation of requiring Y — E(Y'|G) to be orthogonal to
the subspace L?(G). Requirement (%) says that E(Y|G) € L%(G) so E(Y|G) is just the
orthogonal projection of Y onto the closed subspace L?(G). The lemma above shows
that such a projection is well defined. [ ]

19.2.3 “Hands On” Proof

The first is a hands on approach by extending the discrete case via limits. We will
make use of:

Lemma 19.7 (William’s Tower Property) Suppose G C H C F are nested o-
fields and E(-|G) and E(-|H) are both well defined. Then E(E(Y|H)|G) = E(Y|G) =
E(E(Y|9)[H).

A special case is when G = {), Q} then E(Y'|G) = EY is a constant so it’s easy to see
E(E(Y[H)|G) = E(E(Y)[H) = E(Y) and E(E(Y|G)[H) = E(E(Y)[H) = E(Y).

Proof Sketch: (Existence via Limits) For a disjoint partition UG; = Qand G € G =
o({G;}) we have shown that

E(Y1g,)
EY|G) = ——%“1a,
where we deal appropriately with the niggling possibility of P(G;) = 0 by either
throwing out the offending sets or defining % =0.

We now consider an arbitrary but countably generated o-field G. This situation is not
too restrictive, for example the o-field associated with an R-valued random variable
X is generated by the countable collection {B; = (X < ;) :r € Q}. If we set G, =
o(By, Bs, ..., B,) then G, is increasing to the limit G; C Go C ... C G = 0(UG,,). For
a given n the random variable Y,, = E(Y'|G,) exists by our explicit definition above
since we can decompose the generating set into a disjoint partition of the space.

Now we show that Y,, converges in some appropriate manner to a Y, which will then
serve as a version of E(Y|G). We will assume that E|Y|? < oo
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Write YV, = E(Y|G,) = Y1 + (Y2 = Y1) + (Y5 = Y5) + ... + (¥, — Yj,—1). The terms in
this summation are orthogonal in L? so we can compute the variance as

sp = E(Y7) = E(Y?) + E((Y2 = Y1)°) ... + E((Ys = Ya1)?)
where the cross terms are zero. Let s* = E(Y?) = E(Y,, + (Y —Y,)) < co. Then
s2 1 s% < s* < co. For n > m we know again by orthogonality that E((Y,, —Y;,)?) =
s2 — s — 0 as m — oo since s2 is just a bounded real sequence. This means that

the sequence Y,, is Cauchy in L? and invoking the completeness of L? we conclude
that Y, — Y.

All that remains is to check that Y, is a conditional expectation. It satisfies require-
ment (i) since as a limit of G-measurable variables it is G-measurable. To check (7i) we
need to show that E(YG) = E(Y,G) for all G which are bounded and G-measurable.
As usual, it suffices to check for a much smaller set {14, : A; € A} where A is an
intersection closed collection and o(A) = G. Take this collection to be A = U,,G,.

E(Y Gp) = E(YG) = E(Y,,G)

holds by the tower property for any n > m. Noting that E(Y,,Z) — E(Y,Z) is true

for all Z € L? by the continuity of the inner product, this sequence must go to the
desired limit which gives E(Y'G,,) = E(YooGim)- u

Exercise 19.8 Remove the countably generated constraint on G. (Hint: Be a bit
more clever: for Y € L? look at B(Y|G) for G C F with G finite. Then as above
supg E(E(Y']G)?) < EY? so we can choose G, with E(E(Y'|G,)?) increasing to this
supremum. The G, may not be nested but argue that C,, = 0(G1 UGy U ...UG,) are
and let Y = lim, E(Y|C,,))).

Exercise 19.9 Remowve the L? constraint on 'Y . (Hint: Consider Y > 0 and show
convergence of E(Y An | G), then turn crank on the standard machinery.)
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