
Lecture 19 : Conditional Probability & Expectation

STAT205 Lecturer: Jim Pitman Scribe: Saurabh Amin <amins@berkeley.edu>

This set of notes is a revision of the work of Charles C. Fowlkes. Reference: [1],
section 4.1.

19.1 Definition of Conditional Expectation

We present the definition of conditional expectation due to Kolmogorov (1933).

Definition 19.1 Given the probability space (Ω,F , P), some sub-sigma field G ⊂ F ,
and a random variable X ∈ L1(F) (meaning that X is F-measurable and E|X| < ∞),
the conditional expectation of X given G is the (almost surely unique) random variable
X̂ such that

i. X̂ ∈ L1(G) that is, X̂ is G-measurable; and

ii. E(X̂1G) = E(X1G) for all G ∈ G: that is, X̂ integrates like X over all G-sets.

Recall that E(X̂1G) =
∫

G
XdP. The random variable X̂ is denoted by E(X|G).

We now discuss the motivation behind this definition by elementary considerations.
Recall the ‘undergraduate’ definition of conditional probability given by Bayes’ Rule

P(A|B) ≡
P(A, B)

P(B)

for P(B) > 0. Now if G1, G2, . . . is a partition of Ω into measurable sets, then

P(A) =
∑

i

P(A ∩ Gi) =
∑

i

P(A|Gi)P(Gi) (19.1)

Recall that this is a form of the law of total probability. P(·|B) is a new probability
measure on Ω which concentrates on B. We can then generalize naturally to condi-
tional expectations because P(dω|B) can be used to integrate as any P(dω). Using
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this fact, Bayes’ rule, and the law of total probability, we have

E(X|B) =

∫
Ω

X(ω)P(dw|B)

=

∫
X(ω)1(ω ∈ B)P(dw)

P(B)

=
E(X1B)

P(B)

Note that equation (19.1) is obtained by multiplying the identity 1 =
∑

i
1Gi

on both
sides by 1A and taking expectations. This can easily be generalized to the following
by multiplying the identity on both sides by X and taking expectations.

E(X) =
∑

i

E(X1Gi
) =

∑
i

E(X|Gi)P(Gi) (19.2)

This will be true provided E|X| < ∞. A variation of equation (19.2) can be obtained
as follows. Let G be any union of the Gi, i.e., G ∈ G where G = σ(Gi, i = 1, 2, , . . .).
Again, multiplying the identity 1G =

∑
i:Gi⊂G

1Gi
on both sides by X and taking

expectations we obtain the following:

E(X1G) =
∑

i:Gi⊂G

E(X1Gi
)

=
∑

i:Gi⊂G

E(X|Gi)P(Gi) (19.3)

The R.H.S. of equation (19.3) can interpreted as the expectation of a random variable
X̂ =

∑
i:Gi⊂G

E(X|Gi)1Gi
, that is, X̂ takes the value E(X|Gi) if Gi occurs. We have

just shown that E(X1G) = E(X̂1G) for every G which is a union of the Gis’ (refer to
condition (ii) of definition 19.1). Obviously, since X̂ is measurable w.r.t. G, condition
(i) of definition 19.1 is satisfied. So we have just constructed X̂ = E(X|G) explicitly
in the case when G = σ(G1, G2, . . .).

19.2 Existence and Uniqueness of Conditional Ex-

pectation

Proposition 19.2 E(X|G) is unique up to almost sure equivalence.

Proof Sketch: Suppose that two random variables X̂1 and X̂2 are candidates for
the conditional expectation E(X|G). Let Y := X̂1 − X̂2. So we have Y ∈ L1(G)
and E(Y 1G) = 0 ∀G ∈ G. In particular, choose G = {Y > ε} and so we have
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E(Y 1(Y > ε)) = 0. By Markov’s inequality, P(Y > ε) ≤ E(Y 1(Y > ε))/ε = 0.
Interchanging the roles of X1 and X2, we have P(Y < −ε) = 0. And since ε is
arbitrary, P(Y = 0) = 1.

Proposition 19.3 E(X|G) exists.

We give three different approaches for dealing with the general case.

19.2.1 Measure Theory Proof

Here we pull out some power tools from measure theory.

Theorem 19.4 (Lebesgue-Radon-Nikodym) (see [1], p.4̃77) If µ and λ are non-
negative σ-finite measures on a collection G and µ(G) = 0 =⇒ λ(G) = 0 (written
λ << µ, pronounced ”λ is absolutely continuous with respect to µ”) for all G ∈ G then
there exists a non-negative G-measurable function Ŷ such that

λ(G) =

∫
G

Ŷ dµ

for all G ∈ G. If X̂ is another such function then X̂ = Ŷ µ a.e.

Proof Sketch: (existence via Lebesgue-Radon-Nikodym) Assume Y ≥ 0 and define
the measure

Q(C) =

∫
C

Y dP = EY 1C

which is non-negative and finite because E|Y | < ∞. Note that Q is absolutely
continuous with respect to P . LRN implies the existence of Ŷ which satisfies our
requirements to be a version of the conditional expectation Ŷ = E(Y |G). For general
Y we can employ E(Y +|G) − E(Y −|G).

19.2.2 Hilbert Space Method

This gives a nice geometric picture for the case when Y ∈ L2

Lemma 19.5 Every nonempty, closed, convex set E in a Hilbert space H contains a
unique element of smallest norm.

Lemma 19.6 (Existence of Projections in Hilbert Space) Given a closed sub-
space K of a Hilbert space H and element x ∈ H, there exists a decomposition
x = y + z where y ∈ K and z ∈ K⊥ (the orthogonal complement).
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The idea for the existence of projections is to let y be the element of smallest norm
in x + K and z = x − y. See Rudin 87 (p.7̃9) for a full discussion of Lemma 19.5.

Proof Sketch: (Existence via Hilbert Space Projection) Suppose Y ∈ L2(F) and
X ∈ L2(G). Requirement (ii) demands that for all X

E((Y − E(Y |G))X) = 0

which has the geometric interpretation of requiring Y − E(Y |G) to be orthogonal to
the subspace L2(G). Requirement (i) says that E(Y |G) ∈ L2(G) so E(Y |G) is just the
orthogonal projection of Y onto the closed subspace L2(G). The lemma above shows
that such a projection is well defined.

19.2.3 “Hands On” Proof

The first is a hands on approach by extending the discrete case via limits. We will
make use of:

Lemma 19.7 (William’s Tower Property) Suppose G ⊂ H ⊂ F are nested σ-
fields and E(·|G) and E(·|H) are both well defined. Then E(E(Y |H)|G) = E(Y |G) =
E(E(Y |G)|H).

A special case is when G = {∅, Ω} then E(Y |G) = EY is a constant so it’s easy to see
E(E(Y |H)|G) = E(E(Y )|H) = E(Y ) and E(E(Y |G)|H) = E(E(Y )|H) = E(Y ).

Proof Sketch: (Existence via Limits) For a disjoint partition tGi = Ω and G ∈ G =
σ({Gi}) we have shown that

E(Y |G) =
∑

i

E(Y 1Gi
)

P (Gi)
1Gi

where we deal appropriately with the niggling possibility of P(Gi) = 0 by either
throwing out the offending sets or defining 0

0
= 0.

We now consider an arbitrary but countably generated σ-field G. This situation is not
too restrictive, for example the σ-field associated with an R-valued random variable
X is generated by the countable collection {Bi = (X ≤ ri) : r ∈ Q}. If we set Gn =
σ(B1, B2, . . . , Bn) then Gn is increasing to the limit G1 ⊂ G2 ⊂ . . . ⊂ G = σ(∪Gn). For
a given n the random variable Yn = E(Y |Gn) exists by our explicit definition above
since we can decompose the generating set into a disjoint partition of the space.

Now we show that Yn converges in some appropriate manner to a Y∞ which will then
serve as a version of E(Y |G). We will assume that E|Y |2 < ∞
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Write Yn = E(Y |Gn) = Y1 + (Y2 − Y1) + (Y3 − Y2) + . . . + (Yn − Yn−1). The terms in
this summation are orthogonal in L2 so we can compute the variance as

s2
n = E(Y 2

n ) = E(Y 2
1 ) + E((Y2 − Y1)

2) . . . + E((Yn − Yn−1)
2)

where the cross terms are zero. Let s2 = E(Y 2) = E(Yn + (Y − Yn)) < ∞. Then
s2

n
↑ s2

∞ ≤ s2 < ∞. For n > m we know again by orthogonality that E((Yn −Ym)2) =
s2

n
− s2

m
→ 0 as m → ∞ since s2

n
is just a bounded real sequence. This means that

the sequence Yn is Cauchy in L2 and invoking the completeness of L2 we conclude
that Yn → Y∞.

All that remains is to check that Y∞ is a conditional expectation. It satisfies require-
ment (i) since as a limit of G-measurable variables it is G-measurable. To check (ii) we
need to show that E(Y G) = E(Y∞G) for all G which are bounded and G-measurable.
As usual, it suffices to check for a much smaller set {1Ai

: Ai ∈ A} where A is an
intersection closed collection and σ(A) = G. Take this collection to be A = ∪mGm.

E(Y Gm) = E(YmGm) = E(YnGm)

holds by the tower property for any n > m. Noting that E(YnZ) → E(Y∞Z) is true
for all Z ∈ L2 by the continuity of the inner product, this sequence must go to the
desired limit which gives E(Y Gm) = E(Y∞Gm).

Exercise 19.8 Remove the countably generated constraint on G. (Hint: Be a bit
more clever: for Y ∈ L2 look at E(Y |G) for G ⊂ F with G finite. Then as above
supG E(E(Y |G)2) ≤ EY 2 so we can choose Gn with E(E(Y |Gn)2) increasing to this
supremum. The Gn may not be nested but argue that Cn = σ(G1 ∪ G2 ∪ . . . ∪ Gn) are
and let Ŷ = limn E(Y |Cn))).

Exercise 19.9 Remove the L2 constraint on Y . (Hint: Consider Y ≥ 0 and show
convergence of E(Y ∧ n | G), then turn crank on the standard machinery.)
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