Lecture 19: Conditional Probability & Expectation

 ${
m STAT205}\ Lecturer:\ Jim\ Pitman \qquad {
m Scribe:}\ Saurabh\ Amin\,$ <amins@berkeley.edu>

This set of notes is a revision of the work of Charles C. Fowlkes. Reference: [1], section 4.1.

19.1 Definition of Conditional Expectation

We present the definition of conditional expectation due to Kolmogorov (1933).

Definition 19.1 Given the probability space $(\Omega, \mathcal{F}, \mathbb{P})$, some sub-sigma field $\mathcal{G} \subset \mathcal{F}$, and a random variable $X \in \mathbf{L}^1(\mathcal{F})$ (meaning that X is \mathcal{F} -measurable and $\mathbb{E}|X| < \infty$), the conditional expectation of X given \mathcal{G} is the (almost surely unique) random variable \hat{X} such that

- i. $\hat{X} \in L^1(\mathcal{G})$ that is, \hat{X} is \mathcal{G} -measurable; and
- ii. $\mathbb{E}(\hat{X}\mathbf{1}_G) = \mathbb{E}(X\mathbf{1}_G)$ for all $G \in \mathcal{G}$: that is, \hat{X} integrates like X over all \mathcal{G} -sets.

Recall that $\mathbb{E}(\hat{X}\mathbf{1}_G) = \int_G X d\mathbb{P}$. The random variable \hat{X} is denoted by $\mathbb{E}(X|\mathcal{G})$. We now discuss the motivation behind this definition by elementary considerations. Recall the 'undergraduate' definition of conditional probability given by Bayes' Rule

$$\mathbb{P}(A|B) \equiv \frac{\mathbb{P}(A,B)}{\mathbb{P}(B)}$$

for $\mathbb{P}(B) > 0$. Now if G_1, G_2, \ldots is a partition of Ω into measurable sets, then

$$\mathbb{P}(A) = \sum_{i} \mathbb{P}(A \cap G_i) = \sum_{i} \mathbb{P}(A|G_i)\mathbb{P}(G_i)$$
 (19.1)

Recall that this is a form of the law of total probability. $\mathbb{P}(\cdot|B)$ is a new probability measure on Ω which concentrates on B. We can then generalize naturally to conditional expectations because $\mathbb{P}(d\omega|B)$ can be used to integrate as any $\mathbb{P}(d\omega)$. Using

this fact, Bayes' rule, and the law of total probability, we have

$$\mathbb{E}(X|B) = \int_{\Omega} X(\omega) \mathbb{P}(dw|B)$$

$$= \frac{\int X(\omega) \mathbf{1}(\omega \in B) \mathbb{P}(dw)}{\mathbb{P}(B)}$$

$$= \frac{\mathbb{E}(X\mathbf{1}_{B})}{\mathbb{P}(B)}$$

Note that equation (19.1) is obtained by multiplying the identity $\mathbf{1} = \sum_{i} \mathbf{1}_{G_i}$ on both sides by $\mathbf{1}_A$ and taking expectations. This can easily be generalized to the following by multiplying the identity on both sides by X and taking expectations.

$$\mathbb{E}(X) = \sum_{i} \mathbb{E}(X\mathbf{1}_{G_i}) = \sum_{i} \mathbb{E}(X|G_i)\mathbb{P}(G_i)$$
(19.2)

This will be true provided $\mathbb{E}|X| < \infty$. A variation of equation (19.2) can be obtained as follows. Let G be any union of the G_i , i.e., $G \in \mathcal{G}$ where $\mathcal{G} = \sigma(G_i, i = 1, 2, ...)$. Again, multiplying the identity $\mathbf{1}_G = \sum_{i:G_i \subset G} \mathbf{1}_{G_i}$ on both sides by X and taking expectations we obtain the following:

$$\mathbb{E}(X\mathbf{1}_G) = \sum_{i:G_i \subset G} \mathbb{E}(X\mathbf{1}_{G_i})$$

$$= \sum_{i:G_i \subset G} \mathbb{E}(X|G_i)\mathbb{P}(G_i)$$
(19.3)

The R.H.S. of equation (19.3) can interpreted as the expectation of a random variable $\hat{X} = \sum_{i:G_i \subset G} \mathbb{E}(X|G_i) \mathbf{1}_{G_i}$, that is, \hat{X} takes the value $\mathbb{E}(X|G_i)$ if G_i occurs. We have just shown that $\mathbb{E}(X\mathbf{1}_G) = \mathbb{E}(\hat{X}\mathbf{1}_G)$ for every G which is a union of the G_i s' (refer to condition (ii) of definition 19.1). Obviously, since \hat{X} is measurable w.r.t. \mathcal{G} , condition (i) of definition 19.1 is satisfied. So we have just constructed $\hat{X} = \mathbb{E}(X|\mathcal{G})$ explicitly in the case when $\mathcal{G} = \sigma(G_1, G_2, \ldots)$.

19.2 Existence and Uniqueness of Conditional Expectation

Proposition 19.2 $\mathbb{E}(X|\mathcal{G})$ is unique up to almost sure equivalence.

Proof Sketch: Suppose that two random variables \hat{X}_1 and \hat{X}_2 are candidates for the conditional expectation $\mathbb{E}(X|\mathcal{G})$. Let $Y := \hat{X}_1 - \hat{X}_2$. So we have $Y \in L^1(\mathcal{G})$ and $\mathbb{E}(Y\mathbf{1}_G) = 0 \ \forall G \in \mathcal{G}$. In particular, choose $G = \{Y > \epsilon\}$ and so we have

 $\mathbb{E}(Y\mathbf{1}(Y > \epsilon)) = 0$. By Markov's inequality, $\mathbb{P}(Y > \epsilon) \leq \mathbb{E}(Y\mathbf{1}(Y > \epsilon))/\epsilon = 0$. Interchanging the roles of X_1 and X_2 , we have $\mathbb{P}(Y < -\epsilon) = 0$. And since ϵ is arbitrary, $\mathbb{P}(Y = 0) = 1$.

Proposition 19.3 $\mathbb{E}(X|\mathcal{G})$ exists.

We give three different approaches for dealing with the general case.

19.2.1 Measure Theory Proof

Here we pull out some power tools from measure theory.

Theorem 19.4 (Lebesgue-Radon-Nikodym) (see [1], $p.\tilde{4}$ 77) If μ and λ are non-negative σ -finite measures on a collection \mathcal{G} and $\mu(G) = 0 \implies \lambda(G) = 0$ (written $\lambda \ll \mu$, pronounced " λ is absolutely continuous with respect to μ ") for all $G \in \mathcal{G}$ then there exists a non-negative \mathcal{G} -measurable function \hat{Y} such that

$$\lambda(G) = \int_{G} \hat{Y} d\mu$$

for all $G \in \mathcal{G}$. If \hat{X} is another such function then $\hat{X} = \hat{Y} \mu$ a.e.

Proof Sketch: (existence via Lebesgue-Radon-Nikodym) Assume $Y \ge 0$ and define the measure

$$Q(C) = \int_C Y dP = \mathbb{E} Y \mathbf{1}_C$$

which is non-negative and finite because $\mathbb{E}|Y| < \infty$. Note that Q is absolutely continuous with respect to P. LRN implies the existence of \hat{Y} which satisfies our requirements to be a version of the conditional expectation $\hat{Y} = \mathbb{E}(Y|\mathcal{G})$. For general Y we can employ $\mathbb{E}(Y^+|\mathcal{G}) - \mathbb{E}(Y^-|\mathcal{G})$.

19.2.2 Hilbert Space Method

This gives a nice geometric picture for the case when $Y \in \mathbf{L}^2$

Lemma 19.5 Every nonempty, closed, convex set E in a Hilbert space H contains a unique element of smallest norm.

Lemma 19.6 (Existence of Projections in Hilbert Space) Given a closed subspace K of a Hilbert space H and element $x \in H$, there exists a decomposition x = y + z where $y \in K$ and $z \in K^{\perp}$ (the orthogonal complement).

The idea for the existence of projections is to let y be the element of smallest norm in x + K and z = x - y. See Rudin 87 (p.79) for a full discussion of Lemma 19.5.

Proof Sketch: (Existence via Hilbert Space Projection) Suppose $Y \in \mathbf{L}^2(\mathcal{F})$ and $X \in \mathbf{L}^2(\mathcal{G})$. Requirement (ii) demands that for all X

$$\mathbb{E}((Y - \mathbb{E}(Y|\mathcal{G}))X) = 0$$

which has the geometric interpretation of requiring $Y - \mathbb{E}(Y|\mathcal{G})$ to be orthogonal to the subspace $\mathbf{L}^2(\mathcal{G})$. Requirement (i) says that $\mathbb{E}(Y|\mathcal{G}) \in \mathbf{L}^2(\mathcal{G})$ so $\mathbb{E}(Y|\mathcal{G})$ is just the orthogonal projection of Y onto the closed subspace $\mathbf{L}^2(\mathcal{G})$. The lemma above shows that such a projection is well defined.

19.2.3 "Hands On" Proof

The first is a hands on approach by extending the discrete case via limits. We will make use of:

Lemma 19.7 (William's Tower Property) Suppose $\mathcal{G} \subset H \subset F$ are nested σ -fields and $\mathbb{E}(\cdot|\mathcal{G})$ and $\mathbb{E}(\cdot|\mathcal{H})$ are both well defined. Then $\mathbb{E}(\mathbb{E}(Y|\mathcal{H})|\mathcal{G}) = \mathbb{E}(Y|\mathcal{G}) = \mathbb{E}(\mathbb{E}(Y|\mathcal{G})|\mathcal{H})$.

A special case is when $\mathcal{G} = \{\emptyset, \Omega\}$ then $\mathbb{E}(Y|\mathcal{G}) = \mathbb{E}Y$ is a constant so it's easy to see $\mathbb{E}(\mathbb{E}(Y|\mathcal{H})|\mathcal{G}) = \mathbb{E}(\mathbb{E}(Y)|\mathcal{H}) = \mathbb{E}(Y)$ and $\mathbb{E}(\mathbb{E}(Y|\mathcal{G})|\mathcal{H}) = \mathbb{E}(\mathbb{E}(Y)|\mathcal{H}) = \mathbb{E}(Y)$.

Proof Sketch: (Existence via Limits) For a disjoint partition $\sqcup G_i = \Omega$ and $G \in \mathcal{G} = \sigma(\{G_i\})$ we have shown that

$$E(Y|\mathcal{G}) = \sum_{i} \frac{E(Y\mathbf{1}_{G_i})}{P(G_i)} 1_{G_i}$$

where we deal appropriately with the niggling possibility of $\mathbb{P}(G_i) = 0$ by either throwing out the offending sets or defining $\frac{0}{0} = 0$.

We now consider an arbitrary but countably generated σ -field \mathcal{G} . This situation is not too restrictive, for example the σ -field associated with an \mathbb{R} -valued random variable X is generated by the countable collection $\{B_i = (X \leq r_i) : r \in \mathbb{Q}\}$. If we set $\mathcal{G}_n = \sigma(B_1, B_2, \ldots, B_n)$ then \mathcal{G}_n is increasing to the limit $\mathcal{G}_1 \subset \mathcal{G}_2 \subset \ldots \subset \mathcal{G} = \sigma(\cup \mathcal{G}_n)$. For a given n the random variable $Y_n = \mathbb{E}(Y|\mathcal{G}_n)$ exists by our explicit definition above since we can decompose the generating set into a disjoint partition of the space.

Now we show that Y_n converges in some appropriate manner to a Y_{∞} which will then serve as a version of $\mathbb{E}(Y|\mathcal{G})$. We will assume that $\mathbb{E}|Y|^2 < \infty$

Write $Y_n = \mathbb{E}(Y|\mathcal{G}_n) = Y_1 + (Y_2 - Y_1) + (Y_3 - Y_2) + \ldots + (Y_n - Y_{n-1})$. The terms in this summation are orthogonal in \mathbf{L}^2 so we can compute the variance as

$$s_n^2 = \mathbb{E}(Y_n^2) = \mathbb{E}(Y_1^2) + \mathbb{E}((Y_2 - Y_1)^2) \dots + \mathbb{E}((Y_n - Y_{n-1})^2)$$

where the cross terms are zero. Let $s^2 = \mathbb{E}(Y^2) = \mathbb{E}(Y_n + (Y - Y_n)) < \infty$. Then $s_n^2 \uparrow s_\infty^2 \le s^2 < \infty$. For n > m we know again by orthogonality that $\mathbb{E}((Y_n - Y_m)^2) = s_n^2 - s_m^2 \to 0$ as $m \to \infty$ since s_n^2 is just a bounded real sequence. This means that the sequence Y_n is Cauchy in \mathbf{L}^2 and invoking the completeness of \mathbf{L}^2 we conclude that $Y_n \to Y_\infty$.

All that remains is to check that Y_{∞} is a conditional expectation. It satisfies requirement (i) since as a limit of \mathcal{G} -measurable variables it is \mathcal{G} -measurable. To check (ii) we need to show that $\mathbb{E}(YG) = \mathbb{E}(Y_{\infty}G)$ for all G which are bounded and \mathcal{G} -measurable. As usual, it suffices to check for a much smaller set $\{\mathbf{1}_{A_i}: A_i \in \mathcal{A}\}$ where \mathcal{A} is an intersection closed collection and $\sigma(\mathcal{A}) = \mathcal{G}$. Take this collection to be $\mathcal{A} = \bigcup_m \mathcal{G}_m$.

$$\mathbb{E}(YG_m) = \mathbb{E}(Y_mG_m) = \mathbb{E}(Y_nG_m)$$

holds by the tower property for any n > m. Noting that $\mathbb{E}(Y_n Z) \to \mathbb{E}(Y_\infty Z)$ is true for all $Z \in \mathbf{L}^2$ by the continuity of the inner product, this sequence must go to the desired limit which gives $\mathbb{E}(Y \mathcal{G}_m) = \mathbb{E}(Y_\infty \mathcal{G}_m)$.

Exercise 19.8 Remove the countably generated constraint on \mathcal{G} . (Hint: Be a bit more clever: for $Y \in \mathbf{L}^2$ look at $\mathbb{E}(Y|\mathcal{G})$ for $\mathcal{G} \subset \mathcal{F}$ with \mathcal{G} finite. Then as above $\sup_{\mathcal{G}} \mathbb{E}(\mathbb{E}(Y|\mathcal{G})^2) \leq \mathbb{E}Y^2$ so we can choose \mathcal{G}_n with $\mathbb{E}(\mathbb{E}(Y|\mathcal{G}_n)^2)$ increasing to this supremum. The \mathcal{G}_n may not be nested but argue that $\mathcal{C}_n = \sigma(\mathcal{G}_1 \cup \mathcal{G}_2 \cup \ldots \cup \mathcal{G}_n)$ are and let $\hat{Y} = \lim_n \mathbb{E}(Y|\mathcal{C}_n)$).

Exercise 19.9 Remove the L^2 constraint on Y. (Hint: Consider $Y \geq 0$ and show convergence of $\mathbb{E}(Y \wedge n \mid \mathcal{G})$, then turn crank on the standard machinery.)

References

[1] Richard Durrett. Probability: theory and examples, 3rd edition. Thomson Brooks/Cole, 2005.